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The precise role of zinc (Zn) is unknown and the lesions 
of the Zn deficient animal have been imperfectly related 
to the levels of total Zn, or of Zn-dependent enzymes, 
in the relevant tissues. [ 

E.J. Underwood, 1962 

Introduction 

Ten years ago 2 we proposed that Zn exerts a critical 
physiological role in the structure and function of 
biomembranes. We described a possible sequence of 
events that leads to the development of Zn deficiency 
pathology in experimental animals and hypothesized 
that loss of Zn ions from critical components in cell 
plasma membranes triggers a multitude of biochemical 
abnormalities. Since 1981 there has been a dramatic 
increase in research on Zn in many disciplines. It is 
now widely accepted that Zn has a variety of essential 
functions that are not readily explained by its role as 
a prosthetic group of metalloenzymes or as an effector 
of water-soluble, allosteric enzymes. 3-6 The purpose of 
this review is to describe new research that supports 
the hypothesis that there is a critical physiological role 
of Zn in cell plasma membranes and to propose how 
recently discovered biochemical functions of Zn in cell 
plasma membranes may explain the pathology of di- 
etary Zn deficiency. 

Biochemistry and metabolism of zinc 

The biochemistry of Zn has been reviewed exten- 
sively. 4.7 Zn 2+ is a IIb metal ion that, in physiological 
salt solutions at pH 7.4, tends to form phosphates, 
carbonates, and hydroxides of low solubility. In bio- 
logical fluids Zn is solubilized by complexation with 
the oxygen, nitrogen, and sulfur ligands of hydrophilic 
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organic molecules. Zn is a "borderline" Lewis acid 
under the Hard-Soft, Acid-Base Principle. 4,8 It pref- 
erentially forms coordination complexes with four li- 
gands in a tetrahedral array, but readily accepts other 
coordination numbers and geometries. Zn complexes, 
while capable of a high level of thermodynamic sta- 
bility, are generally characterized by kinetic lability 
and, thus, readily undergo 6sZn-Zn exchange. In both 
blood plasma and intracellular fluid Zn is largely bound 
to protein. In metalloproteins Zn is bound with high 
affinity via three or four cysteine, histidine, glutamate, 
and/or aspartate residues. 5 It should be recognized that 
posttranslational modification of protein can create or 
largely eliminate a potential Zn binding ligand; for 
example, the phosphorylation of a serine or threonine 
residue effectively creates a potential Zn binding res- 
idue while the fatty acylation of a cysteine residue 
considerably reduces its Zn binding potential. 

The metabolism of Zn in mammals is dominated by 
the lack of a highly selective carrier for Zn in blood 
and by the existence of metallothioneins, a family of 
intracellular Zn-binding proteins. 9 ~1 The normal Zn 
content of blood plasma is 16-20 t~mol/L in rats and 
12-16 ~mol/L in humans. Zn in plasma is bound pre- 
dominantly to c~2-macroglobulin and albumin; a small 
percentage (~0.2-2.0%) of the Zn in human plasma 
is bound to low molecular weight substances. I2-~ A 
large percentage of the low molecular weight Zn frac- 
tion of plasma is believed to be bound to free amino 
acids, principally as ternary complexes with cysteine 
and histidine. 16 The concentration of Zn as the free 
aqueous ion, as a soluble hydroxide, or as a complex 
with low molecular weight monodentate ligands is be- 
lieved to be very low (10-1°-10 9 M).17.18 In most cell 
types, a portion of intracellular Zn exists in the form 
of a Zn metallothionein complex. Metallothionein gene 
expression is induced by Zn, glucocorticoids, glucagon, 
interleukin 1, and other substances; u metallothionein 
has been proposed to have a role in the control of 
whole body Zn metabolism via its action in the liver 
and intestine. 9,19 21 Zn binds tightly to metallothionein, 
but the half-life of Zn metallothionein is relatively 
short (hrs), suggesting that Zn metallothionein may 
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form a reactive pool of intracellular Zn. Zn metallo- 
thionein has been shown to donate Zn to apometal- 
loenzymes2Z; conversely, apometallothionein has been 
shown to remove Zn from Zn metalloproteins. 23,24 
However, the intracellular "labile pool" of Zn, the 
pool used to support essential physiological functions, 
is undefined. The location, size and speciation of Zn 
in this pool are unknown. 

Experimentally determined biochemical functions 
of Zn are listed in Table 1. Several investigators 4,5,25 
have pointed out that there may be additional, as yet 
undiscovered, biochemical functions of Zn; we concur 
with this assessment. 

Zinc deficiency pathology 
The pathological signs of dietary Zn deficiency in hu- 
mans and animals depend on the length and severity 
of the deficiency, the age, sex, and species of the 
animal, the environmental conditions and the presence 
or absence of iatrogenic factors. 26 The most widely 
utilized model to investigate the biochemical basis for 
Zn deficiency pathology is the short-term, severely 

Table 1 Biochemical functions of zinc 

I. Catalytic functions: 

a) Zn as a co-factor in Zn metalloenzymes 
1 ) Oxidoreductase 
2) Transferase 
3) Hydrolase 
4) Lyase 
5) Isomerase 
6) Ligase 

b) Zn as an effector of enzyme, transporter and membrane chan- 
nel activity 
1 ) Allosteric 

c) 

d) 

2) Protein translocation 
Zn as an effector of gene expression 
1) Zn-modulated trans acting factors in DNA 
2) Direct Zn binding to DNA, RNA, ribosome 
Zn as a non-enzymatic catalyst 
1) Lewis acid 
2) Protein aggregating agent and precipitant 
3) Site-specific antioxidant 

II. Structural functions: 

a) 

b) 

c) 

Structural roles of Zn in metalloproteins 
1) Zn fingers 
2) Zn clusters 
3) Zn twists 
4) Zn acidic clusters 
5) Zn in histidine-rich domains 
6) Conformation-dependent sites 
Structural role in peptide hormones 
1) Prohormone storage and release 
2) Function and metabolism of hormones 
Stabilizer of supramolecular structures 
1) Membranes/membrane skeleton/organelles 
2) Cytoskeleton 
3) Ribosomes 
4) Chromatin 
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deficient rat. The dietary regimen and the description 
of the resultant pathological signs of Zn deficiency 
were described clearly by Swenerton and Hurley 27 in 
1968. 

Weanling rats fed ad libitum otherwise nutritionally 
complete, semi-purified diets containing less than 1 mg 
Zn/kg diet exhibit a precipitous fall in plasma Zn 
concentration within the first 12-24 hours (16.8 to 6.12 
i~mol/L). Remarkably, though there is some cycling of 
plasma Zn levels depending on the pattern of food 
intake, plasma Zn remains depressed for the duration 
of a 3-week experimental period. The cardinal feature 
of short-term, severe Zn deficiency in young rats is 
that the fall in plasma Zn concentration does not lead 
to a decreased Zn concentration in tissues, except 
bone, pancreas, and intestinal mucosa, compared to 
pair-fed and/or ad libitum-fed control rats. 2s-3° Zn dep- 
rivation is characterized by rapid development of path- 
ological signs and rapid reversibility of the signs by Zn 
supplementation. After consuming a Zn deficient diet 
for 2-4 days, young rats voluntarily decrease their food 
intake. Shortly thereafter, there are functional abnor- 
malities in platelets, t-lymphocytes, and keratinocytes. 
The implicit basis of dietary Zn deficiency pathology 
is that most, if not all, cell types are rapidly and 
adversely affected by the decreased extracellular Zn 
concentration. A list of some of the pathological signs 
of Zn deficiency are given in Table 2 along with a time 
scale for the development and reversal of each sign. 
A full description of Zn deficiency pathology has been 
presented in several reviews? t 33 

There are three prominent theories for the biochem- 
ical basis of Zn deficiency pathology. They are: (1) a 
decrease in Zn metalloenzyme activity, (2) altered 
gene expression, and (3) altered structure and function 
of cell plasma membranes. The diversity of Zn defi- 
ciency signs and the pattern of temporal development 
suggest that no single theory adequately explains all 
signs of Zn deficiency. Thus, it may prove useful to 
explore the potential "essential biochemical functions" 
of Zn from the perspective of each theory. 

The effect of dietary Zn deficiency on the activities 
of known Zn metalloenzymes has been studied in some 
depth with variable results. 34 36 Short-term, severely 
Zn-deficient rats exhibit decreased activity of a few Zn 
metalloenzymes in some tissues. The variable effect of 
dietary Zn deficiency on the activity of Zn metalloen- 
zymes has been explained by (1) different Zn metal- 
loenzymes have different Zn binding affinities, (2) the 
size and the rate of depletion of the "labile pool of 
Zn" differs with each tissue, (3) Zn metalloenzymes 
turnover at different rates in different tissues, and (4) 
other metals can substitute for Zn in some Zn metal- 
loenzymes without loss of enzymatic activity. 34.35 How- 
ever, Zn metalloenzymes by definition 7 have tightly 
bound Zn, and one would expect that they would be 
the last molecules to lose Zn during dietary Zn dep- 
rivation. 7,37 Moreover, some Zn metalloenzyme activ- 
ities (alkaline phosphatases, DNA polymerase, RNA 
polymerase, poly ADP-ribose polymerase) are de- 
creased by other physiological conditions (i.e., feed 
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fable 2 Rates of development and remission of zinc deficiency signs in young rodents 

Development after Remission after dietary 
Sign* dietary deprivation repletion Reference no. 

Low plasma Zn (R)I 
Decreased food intake (R) 
Slowed weight gain (R) 
Depressed hemostasis (R) 
Impaired platelet aggregation (R) 
Hyperkeratotic skin lesions (R) 
Depressed immune function (M) 
Erythrocyte osmotic fragility (R) 
Peripheral neuropathy and hy- 

peralgesia (GP) 

12 hr 1 day or less; 2 hr:}: 52, 79, 243 
3-4 days 4-5 hr 244 

4 days 1 day 52, 245 
4 days 4 hr$ 79 
7 days >3, <7 days 80, 81 

10-14 days Improvement 2-3 days 27 
12 days 4 days 246, 247 
21 days 1 day 52, 54, 244 

25 days 4 days 104, 265 

*The time periods are the first reported appearance or disappearance of the deficiency sign but not necessarily its first occurrence. 
1-The species in which the sign was observed is indicated in parenthesis, R for rat, M for mouse, and GP for guinea pig. 
:l:The remission was the result of intragastric Zn therapy rather than dietary Zn. 

restriction, stress, infection) that do not result in Zn 
deficiency pathology. 3~ The search continues for me- 
talloenzymes whose changes in activity parallel the loss 
of Zn in discrete intracellular compartments and di- 
rectly cause observable pathology. 

The role of Zn in gene expression is undeniable. 
Zn is a cofactor for a variety of Zn metalloenzymes 
that are involved with nucleic acid metabolism and Zn 
is a structural component of DNA-binding proteins 
that contain Zn fingers, clusters, and twists. 3~-a° Zn 
deprivation, in vivo and in vitro, blocks and/or alters 
the cell cycle, impairs cellular differentiation, and dis- 
rupts normal patterns of protein synthesis. 31,4' Zn has 
been reported to be recompartmentalized after signal 
reception, and it has been postulated to function as a 
second messenger, activating such intracellular signal 
transducers as protein kinase C 42 and adeno- 
sine(5')tetraphospho(5')-adenosine hydrolase 43 and 
permitting the biosynthesis of enzymes required for 
DNA synthesis. 44 However, it remains to be proven 
that the altered gene expression observed in Zn-defi- 
cient rats is due to a lack of Zn in Zn metalloproteins 
involved with transcription and/or translation. 

The previously stated hypothesis, 2 that dietary Zn 
deficiency pathology is caused principally by a loss of 
Zn from the cell plasma membrane, follows. Cellular 
structures that are in physical contact with the extra- 
cellular Zn pool will be the first to lose Zn in dietary 
Zn deficiency. The loss of Zn from specific proteins 
in cell plasma membranes leads to altered membrane 
structure and function. The biochemical abnormalities 
of cells from Zn-deficient animals are a cellular re- 
sponse to the decreased integrity of the plasma mem- 
brane. Substantial depletion of the intracellular 
concentration of "functional Zn" in mammalian cells 
would rapidly lead to cell death; note the abnormal 
metabolism seen in Euglena gracUis cultured in Zn- 
deficient media, 45 the apoptosis and necrosis observed 
in mammalian cells cultured in media treated with 
pyridine-2,6-dicarboxylic acid, 46 and the necrotic le- 
sions in fetuses from Zn-deficient dams. 47 

Experiments on the role of zinc in cell plasma 
membranes 

The effect of Zn deficiency on cell plasma 
membranes 

Two models exist to study the effect of low extracel- 
lular Zn concentration on the function of mammalian 
cells. The first model involves the production of short- 
term, severe dietary Zn deficiency in an appropriate 
experimental animal. This model is described in the 
section that follows on the effect of added Zn on 
biomembranes. The second model involves the incu- 
bation of mammalian cells in vitro with chelating agents 
to remove and/or withhold Zn from cells. This latter 
model has been used to describe an essential role of 
Zn in cell division. 48.49 However, the low selectivity of 
chelators for Zn and their potential for direct chemical 
interactions with the cell plasma membrane, the cell 
surface, and/or the interior of the cell (i.e., by recep- 
tor-mediated endocytosis) are major drawbacks to 
interpretation of such in vitro research. Chelators re- 
move Zn from mammalian cells to a variable degreey ~ 
and the in vitro production of Zn deficiency by the use 
of chelating agents has not, to date, proven useful in 
defining the role of Zn in cell plasma membranes. ~ 

Erythrocytes. Dietary Zn deficiency causes an abnor- 
mality in the erythrocyte membrane. Erythrocytes from 
Zn-deficient rats have increased osmotic fragility that 
is rapidly (1 day) reversed by dietary Zn supplemen- 
tation, but not by in vitro addition of Zn? 2 This defect 
has been reported to be sensitive to diet composition, 
including sulfur amino acid concentration, protein 
source, lipid content, and lipid type. 52-54 Erythrocytes 
from Zn-deficient rats also have increased sensitivity 
to hemolysis by sodium dodecyl sulfate, sodium do- 
decy! n-sarcosine, and melittin, and decreased sensi- 
tivity to hemolysis by dimethyl sulfoxide. 55 However, 
they have a normal response to many hemolysins. 5~ 
Erythrocytes from Zn-deficient rats have normal rates 
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of filterability in the presence and absence of diamide, 
compared with those of pair-fed controls, 56 but have 
decreased levels of maximal deformability as measured 
by ektacytometry. 57 Erythrocytes from Zn-deficient rats 
have a similar size and shape compared with those 
from Zn-adequate, pair-fed controls. 58.59 Erythrocytes 
from rats deficient in both Zn and vitamin E have 
increased peroxidative fragility compared with vitamin 
E-deficient controls. 6°.61 However, erythrocytes from 
Zn-deficient rats have a normal lifespan when injected 
into the blood of Zn-adequate rats, 5~ and have normal 
mechanical fragility and heat-induced fragility. 62 Eryth- 
rocytes from Zn-deficient rats have been reported to 
have increased fluidity of the lipid bilayer as measured 
by the mobility of 5-doxyl stearate spin probe and 
increased mobility of a spin probe covalently bound to 
sialic acid residues on the cell surface. 63 There are 
conflicting reports that the mobility of a covalently 
bound maleimide spin probe is changed; one states 
that probe mobility is increased 62 and another that it 
is unaltered 64 in erythrocyte membranes from Zn-de- 
ficient rats. 

The biochemical changes responsible for the altered 
functional and physical properties of the erythrocyte 
membrane in Zn-deficient rats are unknown; however, 
it is clear that the erythrocyte membrane, but not the 
erythrocyte cytosol, has a depressed Zn concentra- 
tion. 65 In addition, erythrocytes from Zn-deficient rats 
have significantly decreased concentrations of ATP 
and 2,3-diphosphoglycerate, 66 spermidine, 67 basic amino 
acids2 ~ and phosphatidylinositol-bis-phosphate 69 rela- 
tive to Zn adequate ad libitum-fed, but not pair-fed, 
controls. The erythrocyte membranes 7°,7l and eryth- 
rocyte membrane Triton-shells n have changes in lipid 
composition that are characterized by altered choles- 
terol:phospholipid ratio, phospholipid composition, 
and/or phospholipid fatty acid composition. There is a 
greater extent of dephosphorylation of spectrin and 
actin in isolated erythrocyte membranes from Zn-de- 
ficient rats than in controls, s6 and there is an altered 
protein composition of the membrane skeleton ex- 
tracted in a low ionic strength buffer. 73 Ca 2÷ ATPase 
and 5'-nucleotidase activities in erythrocytes from both 
Zn-deficient rats and pigs are lower than controls£ 4 
Erythrocytes from Zn-deficient rats have enhanced up- 
take of 65Zn in vitro. 75 There is increased 65Zn-Zn 
exchange in vivo in erythrocytes from human patients 
with Zn deficiency 76 and decreased alkaline phospha- 
tase activity in erythrocyte membranes from young 
men fed marginally deficient diets. 77 

Platelets. Both breeder females and immature male 
rats fed low zinc diets exhibit prolonged bleeding 
times. 78.79 Dietary Zn deprivation causes impairment 
of platelet aggregation in rats, 8°,81 guinea pigs 82 and 
humans. 83 Platelets in platelet-rich plasma show an 
impaired secondary phase of aggregation with a re- 
duced response to such aggregating agents as ADP, 
collagen, and arachidonic acid. 8°,8~ Washed platelets 
are also less responsive to ADP. 8~ Their uptake of 
external Ca 2+ in response to ADP is impaired, while 

Physiological roles of zinc: Bettger and O'Dell 

the release of internal Ca 2+ is unchanged. 84 Normal 
platelets also show impairment of the secondary phase 
of aggregation when they are treated with the calcium 
channel blocker, verapamil. 85 Based on these obser- 
vations, it has been proposed that the platelet pathol- 
ogy in Zn deficiency involves a defective calcium 
channel or signal transduction mechanism. ~4 Platelets 
from Zn-deficient rats have a decreased number of 
PGE~ receptors, but the receptors have an enhanced 
affinity for PGEl. 86 

Leukocytes and other blood cells. Dietary Zn deficiency 
has detrimental effects on other blood cells that may 
be related to alterations in the properties of plasma 
membranes. Zn deficiency in rodents causes an invo- 
lution of the thymus, a reduction in the mass of the 
spleen, and a decrease in circulating lymphocyte num- 
ber, suggesting impaired proliferation of lympho- 
cytes. 87 Whether there is an alteration in the T 
lymphocyte subsets in vivo, secondary to decreased to- 
tal lymphocyte number, is currently being debated. 88 9o 
The proliferative response of lymphocytes isolated 
from spleen appears to depend on the age of the 
experimental animal, the length and severity of Zn 
deficiency, and the mitogen used to stimulate prolif- 
eration. 91-94 However, incubation of isolated lympho- 
cytes with chelators, EDTA, or o-phenanthroline 
suppresses the proliferative response to mitogens, an 
effect that appears reversible by incubation with Zn in 
vitro. 95,96 Macrophage function is depressed in Zn-de- 
ficient animals 93.97 and there is impaired neutrophil 
chemotaxis in Zn-deficient rats, 98 rhesus monkeys, 99 
and in human patients with acrodermatitis enteropath- 
ica. 1°°,1°1 Zn deficiency in rats leads to a reduced va- 
sodilation in response to bradykinin and prostacyclin? °2 
Monolayers of capillary endothelial cells, made Zn 
deficient in vitro, show decreased barrier function as 
regards albumin movement. 103 For each cell type there 
is an apparent reduced responsiveness to external 
signals. 

Neurons. There are altered functions of brain and the 
peripheral nervous system in dietary Zn deficiency. 
Zn-deficient guinea pigs 1°4 and chicks 1°5 have decreased 
rates of action potential propagation in the sciatic nerve. 
In Zn-deficient rats there is an increased binding of 
naloxone to opiate receptors, due to an increased num- 
ber of binding sites; however, the binding of glutamate 
and aspartate to their receptors in hippocampal syn- 
aptosomes is unaltered. J°6.~°7 Abnormal synaptic field 
potentials occur in response to low frequency stimu- 
lation of hippocampal mossy fiber axons in Zn-defi- 
cient rats, 1°8 and in Zn deficient guinea pigs there is 
impaired glutamate-dependent Ca 2+ uptake in isolated 
brain synaptosomes. 1°9 There is a decreased in vitro 
polymerization rate of brain tubulin in Zn-deficient 
rats H°-113 and pigs, 11° but the effect in rats is largely 
the result of depressed food intake. H2,H3 In chicks and 
guinea pigs, species that are most susceptible to Zn 
deficiency neuropathy, Zn status has no effect on the 
rate of tubulin polymerization. 113 
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Lipoproteins. Dietary Zn deficiency has been asso- 
ciated with altered lipid metabolism and altered sus- 
ceptibility to lipid peroxidation in many tissues and 
in lipoproteins. These topics have been reviewed 
recently 25,'4,'5 and will not be updated here. The con- 
tribution of compositional changes in plasma mem- 
brane lipids and of oxidative and peroxidative stress 
to the etiology of Zn deficiency pathology is unknown. 

Zinc in cell p lasma membranes  

Zinc is found at remarkably high concentrations in 
many cell membrane fractions; some concentrations 
are given in Table 3. Unfortunately, few plasma mem- 
branes have been analyzed for Zn concentration. In 
spite of obvious concerns for redistribution of phys- 
iological levels of Zn during tissue disruption and the 
possibility of net Zn loss or gain during the isolation 
process, it appears that the relative Zn concentration 
in various cell fractions is of biological significance. 
High concentrations of Zn in cell plasma membranes 
suggest critical physiological functions for Zn in this 
organel le .  6,u6.u7 

More important than the question of the total Zn 
concentration in cell plasma membranes is the location 
of Zn within the membrane in vivo. The precise lo- 
cation and speciation of the labile pool of Zn in cell 
plasma membranes are unknown, but are critical to 
our understanding of function. To aid in understanding 
location and speciation of Zn in cell plasma mem- 
branes, consider the Zn concentration in four zones of 

the cell plasma membrane: (1) the outer cell surface, 
(2) the aqueous domain of pores and channels within 
the membranes, (3) the inner surface of the cell plasma 
membrane, and (4) specialized membrane structures. 
A diagram of Zn binding zones 1-3, based on the 
structure of the human erythrocyte membrane, is shown 
in Figure 1. No Zn is considered to be present within 
the lipid phase of the membrane bilayer unless it is 
bound to a lipid-soluble Zn chelator such as protopor- 
phyrin IX. Zone 3 includes all proteins of the mem- 
brane skeleton. Not shown in Figure 1 are specialized 
membrane structures that include tight junctions, gap 
junctions, membrane caps, and endocytotic coated pits. 

Some of the Zn in cell plasma membranes is present 
as Zn metalloproteins. These proteins may include the 
following enzymes: alkaline phosphataseJ TM ecto 5'- 
nucleotidase, "9 Zn endopeptidases, 12° carbonic anhy- 
drase, ~2z Cu,Zn superoxide dismutase, 122 and possibly, 
some phospholipases. ~23 

In addition to Zn in metalloenzymes, some Zn in 
cell plasma membranes in vivo is "in transit" across 
cell plasma membrane. The precise mechanisms by 
which Zn crosses cell plasma membranes of mammal- 
ian cells is unknown; however, multiple passive trans- 
port systems appear to be involved. ~24,~25 The rate and 
the route of Zn transport is largely dependent on the 
chemical forms of Zn presented to the cell. 126 ~2~ It is 
generally believed that the pores, channels, and car- 
riers involved in Zn transport are not highly selective. 
The Zn that is continuously present in these structures 
may be significant in terms of Zn mass and regulatory 
function in ion transport systems, r25,~2~ ~3r 

Table 3 The concentration of zinc in membrane fractions of eucaryotic cells 

Zn concentration 
Membrane or fraction Species #g/g protein Reference no 

Erythrocyte plasma membrane rat 61 _+ 4 65 

Taste bud mixed membranes 
Kidney microsomes 
Testis microsomes 
Pancreas p-cell microsomes 
Brain myelin 
Cerebellum myelin 

Hippocampus myelin 
Cerebral cortex myelin 

Uterus microsomes 
Myometrium microsomes 
Liver microsomes 

Lung microsomes 
Skeletal muscle (red) microsomes 
Skeletal muscle (white) microsomes 

31 + 2 71 
humans 20 _+ 2 249 

32 _+ 4 250 
195 _+ 126 232, 251 

pig 56 -+ 2 252 
dog 163 _+ 57 253 
trout 105 _+ 8 254 
bovine 826 _+ 22 255 
bovine 107 _+ 12 256 
monkey 4,360 _+ 1430 257 
mouse 235 -+ 209 258 
rat 930 _+ 460 259 
rat 53 _+ 8 260 

140 + 10 259 
rat 85 _+ 3 260 
rat 53 +_ 3 260 

290 _+ 40 259 
rat 700 _+ 130 261 
rat 770 +_ 50 261 
rat 92 + 3 262 

224 +_ 45 116 
104 + 14 263 

rat 139 _+ 7 262 
rat 70 ± 2 264 
rat 39 _+ 2 264 
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Figure 1 This diagram of a cross-section of the human erythrocyte membrane illustrates the types of structures that are present typically 
in zinc binding zones 1, 2, and 3. 

Effect of added Zn on biomembranes 

Since Warren et a1.132 described the use of Zn in vitro 
to isolate plasma membranes, Zn has been consid- 
ered to be a potential stabilizer of cell plasma mem- 
branes and other intracellular, membrane-encapsu- 
lated organelles. Zn has been used to stabilize nuclei, 133 
lysosomes, 134-136 cell cytoskeletons, 137-14° myelin mem- 
branes, 14H42 brush border membrane vesicles, 143 eryth- 
rocyte membranes, 1.4A45 sperm outer membranes, 1~ and 
the plasma membranes of a variety of cells .  145,147-149 

Explanation of the molecular basis for the "mem- 
brane-stabilizing" effect of Zn has focused on five 
major areas: (1) promotion of membrane skeletal and 
cytoskeletal protein associations, 15°-~65 (2) blockage of 
membrane channels caused by viruses, microbial tox- 
ins, and amphipathic molecules, 145,147,166-173 (3) antiox- 
idation and protection against the disrupting effects of 
lipid peroxidation and protein oxidation, 25,1v4 (4) an- 
tagonism of the adverse effects of Ca2+,  145,175-182 and 
(5) direct alteration of the physical state of membrane 
lipid. 183-~88 Though there are reports that Zn does not 
act as a stabilizer of cell plasma membranes in some 
experimental systems, ~89 19: most data suggest that Zn, 
if present at sufficient concentration, is a highly effec- 
tive stabilizer of cells and cell membranes. 

In addition to its role as a membrane stabilizer, Zn 
has been described as a modulator of cell signaling. ~93 
Mechanisms suggested for this modulation fall into 
three categories: (1) blockage of receptor-gated and 
voltage-gated ion channels, 194-2°7 (2) regulation of pro- 
tein and phosphatidylinositol phosphorylation and de- 
phosphorylation, 37,2°8-222 and (3) regulation of hormone 
binding to cell surface receptors. 223-235 

Do studies that define pharmacological actions of 
Zn on cell plasma membranes provide information 
about the physiological functions of Zn? A lack of Zn 
in cell plasma membranes, whether achieved by dietary 
Zn deficiency in vivo or by Zn chelators in vitro, does 
not necessarily lead to biochemical abnormalities that 
are the opposite of those seen with added Zn. For 
example, Zn has been shown to protect erythrocyte 
membranes against lipid peroxidation and peroxidative 
damage236; however, dietary Zn deficiency does not 
cause increased lipid peroxidation or increased per- 
oxidative fragility in erythrocytes. 61 Similarly, dietary 
Zn deficiency causes an increased osmotic fragility in 
erythrocytes, 52 but added Zn does not affect erythro- 
cyte osmotic fragility except at concentrations that cause 
the precipitation of intracellular hemoglobin. 189 The 
primary value of in vitro studies related to the bio- 
chemical mechanisms by which Zn exerts its effect on 
cell plasma membranes is that they describe events 
that are sensitive to changes in Zn concentration. In 
addition, pharmacological studies can identify sites on 
specific proteins that bind Zn and alter membrane 
function. However, each in vitro effect of Zn on the 
function of a membrane protein must be examined for 
its sensitivity to alterations of physiological Zn con- 
centrations in vivo. 

Mechanisms for the physiological roles of zinc in 
the cell plasma membrane 

The multitude of effects of added Zn on cell plasma 
membranes reflects the diverse biochemical functions 
of the Zn atom and the chemical complexity and dy- 
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namic nature of cell plasma membranes. As defined 
earlier and illustrated in Figure 1, molecular mecha- 
nisms exist for Zn function in cell plasma membrane 
zones 1, 2, and 3. On the outer cell surface (zone 1, 
Figure 1), Zn promotes the binding of the water-sol- 
uble peptide growth hormone to the cell surface pro- 
lactin receptor. 227 In the plane of the lipid bilayer (zone 
2), Zn has been shown to bind deep within the pores 
of a voltage-gated Na channel in the brain 197 and within 
a Ca channel in myotubes. 198 Zinc has been reported 
to induce aggregation of band 3, the anion channel, in 
the erythrocyte membrane. 237 On the inner surface of 
the cell plasma membrane (zone 3), Zn promotes the 
binding of protein kinase C to receptor sequences on 
membrane skeleton proteins. 2~° In spite of our rapidly 
expanding knowledge of the effects of added Zn on 
cell membranes in vitro, the biochemical roles of Zn 
in cell plasma membranes in vivo are unknown. We 
suggest that the critical physiological roles of Zn in 
cell plasma membranes involve the same mechanisms 
that have been elucidated by in vitro addition of Zn 
to membrane proteins: (1) direct allosteric-like effect 
on the conformation of individual proteins and (2) 
direct effect on protein-protein interactions (ternary 
complexes of Zn and two separate proteins). The iden- 
tity of proteins that are sensitive to a decrease in 
physiological Zn concentrations is unknown, but the 
proteins are likely to include cell surface receptors to 
hormone-like substances, ion and water channels, and 
enzyme/protein "receptors" on the inner surface of 
cell plasma membrane. 

The original Zn-membrane hypothesis 2 considered 
Zn primarily as a stabilizer of biomembranes and pos- 
tulated that its absence causes a loss of plasma mem- 
brane integrity. Many of the biochemical changes found 
in cells from Zn-deficient animals were proposed to 
be compensatory to membrane destabilization. 2 Now 
the effect of dietary Zn deficiency on cell plasma mem- 
branes can be described in functional terms: (1) a slight 
increase in sensitivity to non-specific stressors of the 
intact membrane, including: (a) low osmotic pressure, 
(b) peroxidative stress, (c) membrane-expanding hem- 
olysins, (d) temperature, and/or (e) mechanical/shear 
stress; (2) and a pronounced decrease in sensitivity to 
a large subset of normal physiological signals, as de- 
fined earlier. We now suggest that Zn at physiological 
concentrations is a permissive factor that is essential 
for normal signal transduction by cell plasma mem- 
branes. A lack of Zn in cell plasma membranes de- 
sensitizes the membranes to signal molecules and causes 
the cell to be anesthetized to normal external stimuli 
rather than to be destabilized. In terms of Zn defi- 
ciency pathology at the cellular level, an insensitivity 
of the membrane to external stimuli may be the basis 
for decreased platelet Ca 2+ uptake and aggregation 
(impaired response to ADP, collagen, and arachidonic 
acid), decreased lymphocyte mitogenicity (impaired 
response to some lectins), decreased neutrophil chem- 
otaxis (impaired response to FMLP), decreased mac- 
rophage phagocytosis (impaired response to opsonins), 
decreased capillary endothelial cell control of vasodi- 

lation (impaired response to bradykinin, angiotensin), 
and decreased Ca 2+ uptake by synaptosomes (impaired 
responsiveness to glutamate). A lack of Zn in cell 
plasma membranes apparently causes a heterologous 
desensitization 238-241 of receptors to signal molecules 
that is uniquely expressed by each cell type. It is 
important to note that the membrane defect charac- 
teristic of short-term, severe dietary Zn deficiency is 
principally one of dose/response to external signalling 
molecules; the cell from a Zn-deficient animal has a 
diminished response to a given dose of agonist. 

Possible sequence of events during the 
development of zinc deficiency pathology 

Speculation as to the mechanism by which Zn defi- 
ciency produces pathology in animals seems appropri- 
ate. Dietary deprivation of Zn rapidly leads to a low 
concentration of Zn in plasma and other extracellular 
fluids. This is followed by a decreased Zn concentra- 
tion in the cell plasma membrane although no change 
in the total cell Zn is detectable. The specific locations 
of the Zn binding sites in the plasma membrane are 
unknown, but binding may occur on the outer surface, 
within aqueous channels through the lipid bilayer, or 
on the inner surface of the membrane. Other cations, 
such as Ca:*, Mg 2+, Cu 2+, and Fe 2+ , may compete for 
these sites and further decrease Zn concentration. 
Transition metals may also catalyze the oxidation of 
sulfhydryl groups leading to decreased numbers of Zn 
binding sites. 

The following scenario can be visualized. Loss of 
Zn from specific proteins in the plasma membrane 
results in alterations of surface receptors, water and 
ion channels, and the binding of enzymes/proteins to 
the inner surface of the membrane. Defects in these 
critical structures lead to a desensitization of the cell 
to external signal molecules and to functional changes 
at the cellular level. Consequently, the concentrations 
of second messengers and the activities of ion pumps 
change. In this regard, it is known that the number of 
prostaglandin binding sites on platelets is decreased, 
calcium uptake by platelets and cortical synaptosomes 
is decreased, Na,K-ATPase activity in sciatic nerve is 
decreased, and Ca-ATPase activity in erythrocyte 
membranes is decreased. Following malfunction of the 
plasma membrane components, one would expect a 
decreased rate of cell proliferation, growth, and dif- 
ferentiation, including lymphocyte maturation, sper- 
matogenesis, and keratinocyte differentiation. Intra- 
and extra-cellular water distribution and intracellular 
ion concentrations change. There is a loss of appetite. 
Without the stimulation of growth factors, nutrient 
uptake by cells is impaired. These alterations of cell 
function may explain much of the gross pathology 
associated with Zn deficiency in animals. 

Summary and future research directions 

The diversity of the functions of Zn in biological sys- 
tems is gradually being elucidated. A new appreciation 
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Table 4 Sequence of events during dietary zinc deprivation 

Physiological roles of zinc: Bettger and O'Dell 

I. 

II. 

Ill. 

IV. 

V. 

VI. 

VII. 

LOW ZINC INTAKE 

LOW PLASMA AND EXTRACELLULAR FLUID ZINC 

LOW PLASMA MEMBRANE ZINC 

ALTERATIONS IN PLASMA MEMBRANE FUNCTIONS 

SURFACE WATER AND ION ENZYME ACTIVITY AND 
RECEPTORS CHANNELS INNER SURFACE BINDING 

POSSIBLE METABOLIC CHANGES AT CELL LEVEL 

SECOND MESSENGER 
CONCENTRATIONS 

INTRACELLULAR ION AND INTRACELLULAR 
WATER CONCENTRATION NUTRIENT AND ION 

CONCENTRATION 

1 ' 
POSSIBLE FUNCTIONAL CHANGES AT CELL LEVEL 

PROLIFERATION GROWTH/CELL VOLUME 

' i 
FUNCTIONAL CHANGES IN WHOLE ANIMAL 

I 
DECREASED APPETITE 
DECREASED GROWTH RATE 
BLEEDING TENDENCY 
IMPAIRED IMMUNE FUNCTION 

DIFFERENTIATION 

I 

INCREASED OSMOTIC FRAGILITY 
DIFFICULT PARTURITION (DYSTOCIA) 
PERIPHERAL NEUROPATHY 
SKIN LESIONS 

of the vital functions of Zn in the structure and function 
of non-enzymic proteins has attracted scientists from 
many disciplines to study Zn metabolism and function. 
In spite of recent discoveries, the biochemical basis of 
Zn deficiency pathology in animals remains uneluci- 
dated. This review describes one hypothesis to explain 
the mechanism of Zn deficiency pathology. Cells in 
Zn-deficient animals lose Zn from their plasma mem- 
branes, which results in a desensitization of the mem- 
brane to signal transduction. Ultimately, overt signs 
of dietary Zn deficiency may be attributable to this 
abnormality. Though Zn may have pharmacological 
use as a membrane stabilizer, Zn should no longer be 
considered to exert a critical physiological role in the 
stabilization of cell plasma membranes. Alternatively, 
Zn should be considered a permissive factor for normal 
cell signalling. Zn exerts its permissive role by binding 
to and maintaining appropriate tertiary and/or quater- 
nary structure in multiple cell plasma membrane 
proteins. 

Future research on the critical physiological roles of 
Zn in cell plasma membranes should focus on three 
areas. First, the plasma membranes from many cell 
types should be analyzed for Zn under conditions of 
variable extracellular Zn. Speciation of Zn in the plasma 
membrane under these conditions should be examined. 
Second, when the identities of the plasma membrane 
proteins that are sensitive to a loss of Zn are estab- 

lished, the roles of Zn in the structure and function of 
these proteins need to be defined. Finally, the effect 
of dietary Zn deficiency on cell plasma membranes 
should be compared with the effect of stress and/or 
infection on cell plasma membranes, because both of 
these conditions cause a decrease in extracellular Zn 
concentration .242 
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